Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 724
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Sci Rep ; 14(1): 7766, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565927

ABSTRACT

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Subject(s)
Allylbenzene Derivatives , Anisoles , Antioxidants , Depressive Disorder, Major , Humans , Mice , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Depression/drug therapy , Depression/metabolism , Nitrites/metabolism , Depressive Disorder, Major/drug therapy , Maternal Deprivation , Saline Solution/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Oxidative Stress , Hippocampus/metabolism , Disease Models, Animal , Behavior, Animal
2.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38492791

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Subject(s)
Rosa , Rats , Animals , Serotonin/metabolism , Iran , Molecular Docking Simulation , Rats, Sprague-Dawley , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/metabolism , Signal Transduction , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Synapses/metabolism , Stress, Psychological/drug therapy , Hippocampus , Disease Models, Animal
3.
Biomed Pharmacother ; 173: 116425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490155

ABSTRACT

Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.


Subject(s)
Depression , Ferroptosis , Glucosides , Luteolin , Mice , Animals , Depression/drug therapy , Depression/metabolism , Microglia/metabolism , Hippocampus , Behavior, Animal , Inflammation/drug therapy , Inflammation/metabolism , Stress, Psychological/drug therapy , Disease Models, Animal
4.
J Ethnopharmacol ; 327: 117973, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38403002

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: It has been found that pilose antler peptide has an antidepressant effect on depression. However, the exact molecular mechanism of its antidepressant effect is still unclear. AIM OF THE STUDY: The study sought to determine the impact of monomeric pilose antler peptide (PAP; sequence LVLVEAELRE) on depression as well as investigate potential molecular mechanisms. MATERIALS AND METHODS: Chronic unexpected mild stress (CUMS) was used to establish the model, and the effect of PAP on CUMS mice was detected by the behavioral test. The influence of PAP on neuronal cells and dendritic spine density was observed by immunofluorescence and Golgi staining. FGFR3 and the CaMKII-associated pathway were identified using quantitative real-time polymerase chain reaction, and Western blot analysis was utilized to measure their proteins and gene expression levels. Molecular docking and microscale thermophoresis were applied to detect the binding of PAP and FGFR3. Finally, the effect of FGFR3's overexpression on PAP treatment of depression was detected. RESULTS: PAP alleviated the changes in depressive behavior induced by CUMS, promoted the growth of nerve cells, and the density of dendritic spines was increased to its original state. PAP therapy successfully downregulated the expression of FGFR3 and ERK1/2 while upregulating the expression of CREB, BDNF, and CaMKII. CONCLUSION: Based on the current research, PAP has a therapeutic effect on depression brought on by CUMS by inhibiting FGFR3 expression and enhancing synaptic plasticity.


Subject(s)
Depression , Peptides , Receptor, Fibroblast Growth Factor, Type 3 , Mice , Animals , Depression/drug therapy , Depression/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Molecular Docking Simulation , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Hippocampus/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal
5.
Neuroscience ; 542: 47-58, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38364964

ABSTRACT

This study aimed to investigate the anti-depressant effect of traditional pediatric massage (TPM) in adolescent rats and its possible mechanism. The adolescent depression model in rats was established by using chronic unpredictable mild stress (CUMS). All rats were randomly divided into five groups (seven per group), including the groups of control (CON), CUMS, CUMS with TPM, CUMS with back stroking massage (BSM) and CUMS with fluoxetine (FLX). The tests of sucrose preference, Morris water maze and elevated plus maze were used to evaluate depression-related behaviors. Plasma corticosterone (CORT) level was measured by ELISA. The gene and protein expressions of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) were measured by RT-qPCR and IHC respectively. The results showed that CUMS induced depression-related behaviors in the adolescent rats, along with decreased weight gain and reduced hippocampal expressions of GR, IGF-1 and BDNF. TPM could effectively prevent depression-related behaviors in CUMS-exposed adolescent rats, manifested as increasing weight gain, sucrose consumption, ratio of open-arm entry, times of crossing the specific quadrant and shortening escape latency. TPM also decreased CORT level in plasma, together with enhancing expressions of GR, IGF-1 and BDNF in the hippocampus. These results may support the clinical application of TPM to prevent and treat adolescent depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Humans , Child , Rats , Animals , Adolescent , Depression/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Antidepressive Agents/metabolism , Receptors, Glucocorticoid/metabolism , Insulin-Like Growth Factor I/metabolism , Hippocampus/metabolism , Stress, Psychological/metabolism , Massage , Sucrose/metabolism , Weight Gain , Disease Models, Animal
6.
J Ethnopharmacol ; 325: 117846, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301982

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Astragali, a versatile traditional Chinese medicinal herb, has a rich history dating back to "Sheng Nong's herbal classic". It has been employed in clinical practice to address various ailments, including depression. One of its primary active components, total flavonoids from Astragalus (TFA), remains unexplored in terms of its potential antidepressant properties. This study delves into the antidepressant effects of TFA using a mouse model subjected to chronic unpredictable mild stress (CUMS). AIMS OF THE STUDY: The study aimed to scrutinize how TFA influenced depressive behaviors, corticosterone and glutamate levels in the hippocampus, as well as myelin-related protein expression in CUMS mice. Additionally, it sought to explore the involvement of the Wnt/ß-catenin/Olig2/Sox10 signaling axis as a potential antidepressant mechanism of TFA. MATERIALS AND METHODS: Male C57BL/6 mice were subjected to CUMS to induce depressive behaviors. TFA were orally administered at two different doses (50 mg/kg and 100 mg/kg). A battery of behavioral tests, biochemical analyses, immunohistochemistry, UPLC-MS/MS, real-time PCR, and Western blotting were employed to evaluate the antidepressant potential of TFA. The role of the Wnt/ß-catenin/Olig2/Sox10 signaling axis in the antidepressant mechanism of TFA was validated through MO3.13 cells. RESULTS: TFA administration significantly alleviated depressive behaviors in CUMS mice, as evidenced by improved sucrose preference, reduced immobility in tail suspension and forced swimming tests, and increased locomotor activity in the open field test. Moreover, TFA effectively reduced hippocampal corticosterone and glutamate levels and promoted myelin formation in the hippocampus of CUMS mice. Then, TFA increased Olig2 and Sox10 expression while inhibiting the Wnt/ß-catenin pathway in the hippocampus of CUMS mice. Finally, we further confirmed the role of TFA in promoting myelin regeneration through the Wnt/ß-catenin/Olig2/Sox10 signaling axis in MO3.13 cells. CONCLUSIONS: TFA exhibited promising antidepressant effects in the CUMS mouse model, facilitated by the restoration of myelin sheaths and regulation of corticosterone, glutamate, Olig2, Sox10, and the Wnt/ß-catenin pathway. This research provides valuable insights into the potential therapeutic application of TFA in treating depression, although further investigations are required to fully elucidate the underlying molecular mechanisms and clinical relevance.


Subject(s)
Corticosterone , Depression , Oligodendrocyte Transcription Factor 2 , Male , Animals , Mice , Depression/drug therapy , Depression/metabolism , Flavonoids/pharmacology , Chromatography, Liquid , beta Catenin/metabolism , Mice, Inbred C57BL , Tandem Mass Spectrometry , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Hippocampus , Glutamates/metabolism , Glutamates/pharmacology , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism
7.
J Ethnopharmacol ; 325: 117891, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38331122

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Parishin C (Par), a prominent bioactive compound in Gastrodia elata Blume with little toxicity and shown neuroprotective effects. However, its impact on depression remains largely unexplored. AIM OF THE STUDY: This study aims to investigate the antidepressant effects of Par using a chronic social defeat stress (CSDS) mouse model and elucidate its molecular mechanisms. MATERIALS AND METHODS: The CSDS-induced depression mouse model was used to evaluate the therapeutic efficacy of Par. The social interaction test (SIT) and sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were conducted to assess the effects of Par on depressive-like behaviours. The levels of corticosterone, neurotransmitters (5-HT, DA and NE) and inflammatory cytokines (IL-1ß, TNF-α, and IL-6) were evaluated by enzyme-linked immunosorbent assay (ELISA). Activation of a microglia was assessed by immunofluorescence labeling Iba-1. The protein expressions of NLRP3, ASC, caspase-1, and IL-6 verified by Western blot. RESULT: Oral administration of Par (4 and 8 mg/kg) and fluoxetine (10 mg/kg, administration significantly ameliorate depression-like behaviors induced by CSDS, as shown by the increase social interaction in SIT, increase sucrose preference in SPT and the decrease immobility in TST and FST. Par administration decreased serum corticosterone level and increased the 5-HT, DA and NE concentration in the hippocampus and prefrontal cortex. Furthermore, Par treatment suppressed microglial activation (Iba1) as well as reduced levels of IL-1ß, TNF-α, and IL-6) with decreased protein expressions of NLRP3, ASC, caspase-1, and IL-6. CONCLUSIONS: our study provides the first evidence that Par exerts antidepressant-like effects in mice with CSDS-induced depression. This effect appears to be mediated by the normalization of neurotransmitter and corticosterone levels, inhibition of NLRP3 inflammasome activation. This newfound antidepressant property of Par offers a novel perspective on its pharmacological effects, providing valuable insights into its potential therapeutic and preventive applications in depression treatment.


Subject(s)
Glucosides , NLR Family, Pyrin Domain-Containing 3 Protein , Tumor Necrosis Factor-alpha , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Social Defeat , Corticosterone , Serotonin/metabolism , Behavior, Animal , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/metabolism , Hippocampus , Sucrose/metabolism , Caspases/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal
8.
ACS Chem Neurosci ; 15(5): 1010-1025, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38382546

ABSTRACT

Alteration of gut microbiota and microbial metabolites such as short-chain fatty acids (SCFAs) coexisted with stress-generated brain disorders, including depression. Herein, we investigated the effect of SCFAs in a treatment-resistant depression (TRD) model of rat. Rats were exposed to chronic-unpredictable mild stress (CUMS) and repeated adrenocorticotropic hormone (ACTH) injections to generate a TRD-like phenotype. The cecal contents of these animals were engrafted into healthy-recipient rats and allowed to colonize for 4 weeks (TRD-FMT group). Blood, brain, colon, fecal, and cecal samples were collected for molecular studies. Rats exposed to CUMS + ACTH showed TRD-like phenotypes in sucrose-preference (SPT), forced swim (FST), and elevated plus maze (EPM) tests. The TRD-FMT group also exhibited anxiety- and depression-like behaviors. Administration of SCFAs (acetate, propionate, and butyrate at 67.5, 25, and 40 mM, respectively) for 7 days exerted robust antidepressant and antianxiety effects by restoring the levels of SCFAs in plasma and fecal samples, and proinflammatory cytokines (TNF-α and IL-6), serotonin, GABA, norepinephrine, and dopamine in the hippocampus and/or frontal cortex of TRD and TRD-FMT animals. SCFAs treatment elevated the expression of free-fatty acid receptors 2/3, BDNF, doublecortin, and zonula-occludens, and reduced the elevated plasma levels of kynurenine and quinolinic acid and increased mucus-producing goblet cells in TRD and TRD-FMT animals. In 16S sequencing results, decreased microbial diversity in TRD rats corresponds with differences in the genus of Faecalibacterium, Anaerostipes, Allobaculum, Blautia, Peptococcus, Rombustia, Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-002, Solobacterium, Subdolibacterium, and Eubacterium ventriosum. SCFAs may impart beneficial effects via modulation of tryptophan metabolism, inflammation, neurotransmitters, and microbiota-gut-brain axis in TRD rats.


Subject(s)
Anxiety , Depression , Rats , Animals , Depression/drug therapy , Depression/metabolism , Anxiety/drug therapy , Anxiety/metabolism , Fatty Acids, Volatile , Phenotype , Adrenocorticotropic Hormone , Dietary Supplements , Stress, Psychological/metabolism
9.
J Ethnopharmacol ; 326: 117923, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38367929

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoyaosan (XYS) is a traditional prescription for the treatment of liver depression and qi stagnation, and pharmacological studies have shown that XYS has great potential to reverse depression. However, anti-depression targets and the mechanism of XYS are still not entirely clear. AIM OF THE STUDY: The present study aims to explore and verify the anti-depression mechanism of XYS. MATERIALS AND METHODS: The antidepressant effect of XYS was assessed in rats with depression induced by chronic unpredictable mild stimulation (CUMS). The levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in different brain regions were measured using ELISA. The expression of organic cation transporters (Octs) were detected by western blot and immunohistochemical techniques. Then, Decynium-22 (D22), an Octs inhibitor, was injected into the prefrontal cortex (PFC) to verify the correlation between Octs and depression-like behavior. Then, the effects of XYS on the behavior, neurotransmitter concentration, and Octs expression in D22-induced rats were examined. Finally, primary astrocytes were used to verify the mechanism of XYS exerting anti-depressant activity by regulating Octs. RESULTS: The result showed that XYS had a significant positive impact on the behavior of depression rats induced by CUMS. XYS also improved the secretion of 5-HT, DA, and NE in the PFC, as well as the promotion of Oct1, Oct2, and Oct3 expression in the PFC. These results suggest that XYS has the potential to alleviate depression by enhancing the secretion of neurotransmitters. This may be related to XYS regulation of Oct's expression. When the expression of Octs was inhibited in the PFC, rats exhibited behavior similar to depression, and XYS was able to reverse this behavior, indicating that Octs play a significant role in the development of depression and XYS may exert its antidepressant effects through the regulation of Octs. Furthermore, the study also found that dopamine uptake decreased after inhibiting the expression of Octs, and XYS-containing serum could reverse the downregulation of Oct1 and Oct3 and promote intracellular dopamine homeostasis in the astrocytes. Overall, XYS may exert antidepressant effects by promoting dopamine uptake to improve neurotransmitter transport by regulating the protein expression of Oct1 and Oct3 in astrocytes. CONCLUSIONS: The antidepressant effect of XYS may be attributed to its ability to regulate the expression of Oct1 and Oct3 in astrocytes of the PFC, thereby promoting neurotransmitter transport.


Subject(s)
Astrocytes , Depression , Drugs, Chinese Herbal , Rats , Animals , Depression/drug therapy , Depression/etiology , Depression/metabolism , Dopamine , Serotonin , Behavior, Animal , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Prefrontal Cortex , Neurotransmitter Agents
10.
Phytomedicine ; 126: 155452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422650

ABSTRACT

BACKGROUND: Depression is a common and recurrent neuropsychiatric disorder. Recent studies have shown that the N-methyl-d-aspartate (NMDA) receptor (NMDAR) is involved in the pathophysiology of depression. Previous studies have found that Kaji-ichigoside F1 (KF1) has a protective effect against NMDA-induced neurotoxicity. However, the antidepressant mechanism of KF1 has not been confirmed yet. PURPOSE: In the present study, we aimed to evaluate the rapid antidepressant activity of KF1 and explore the underlying mechanism. STUDY DESIGN: First, we explored the effect of KF1 on NMDA-induced hippocampal neurons and the underlying mechanism. Second, depression was induced in C57BL/6 mice via chronic unpredictable mild stress (CUMS), and the immediate and persistent depression-like behavior was evaluated using the forced swimming test (FST) after a single administration of KF1. Third, the contributions of NMDA signaling to the antidepressant effect of KF1 were investigated using pharmacological interventions. Fourth, CUMS mice were treated with KF1 for 21 days, and then their depression-like behaviors and the underlying mechanism were further explored. METHODS: The FST was used to evaluate immediate and persistent depression-like behavior after a single administration of KF1 with or without NMDA pretreatment. The effect of KF1 on depressive-like behavior was investigated in CUMS mice by treating them with KF1 once daily for 21 days through the sucrose preference test, FST, open field test, and tail suspension test. Then, the effects of KF1 on the morphology and molecular and functional phenotypes of primary neuronal cells and hippocampus of mice were investigated by hematoxylin-eosin staining, Nissl staining, propidium iodide staining, TUNEL staining, Ca2+ imaging, JC-1 staining, ELISA, immunofluorescence analysis, RT-PCR, and Western blot. RESULTS: KF1 could effectively improve cellular viability, reduce apoptosis, inhibit the release of LDH and Ca2+, and increase the mitochondrial membrane potential and the number of dendritic spines numbers in hippocampal neurons. Moreover, behavioral tests showed that KF1 exerted acute and sustained antidepressant-like effects by reducing Glu-levels and ameliorating neuronal damage in the hippocampus. Additionally, in vivo and in vitro experiments revealed that PSD95, Syn1, α-amino-3­hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and brain-derived neurotrophic factor (BDNF) were upregulated at the protein level, and BDNF and AMPA were upregulated at the mRNA level. NR1 and NR2A showed the opposite trend. CONCLUSION: These results confirm that KF1 exerts rapid antidepressant effects mainly by activating the AMPA-BDNF-mTOR pathway and inhibiting the NMDAR-CaMKIIα pathway. This study serves as a new reference for discovering rapid antidepressants.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Mice , Animals , Depression/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , N-Methylaspartate/metabolism , N-Methylaspartate/pharmacology , Mice, Inbred C57BL , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus , Stress, Psychological/drug therapy , Disease Models, Animal
11.
Inflammopharmacology ; 32(2): 1147-1157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180676

ABSTRACT

Depression is linked with oxidative stress and inflammation, where key players include nitric oxide (NO), nuclear factor erythroid 2-related factor 2 (Nrf2), Brain-Derived Neurotrophic Factor (BDNF), and Heme Oxidase-1 (HO-1). Augmenting the efficacy of antidepressants represents a compelling avenue of exploration. We explored the potential of vitamins C and D as adjuncts to escitalopram (Esc) in a lipopolysaccharide (LPS)-induced depression model focusing on the aforementioned biomarkers. Male Swiss albino mice were stratified into distinct groups: control, LPS, LPS + Esc, LPS + Esc + Vit C, LPS + Esc + Vit D, and LPS + Esc + Vit C + Vit D. After a 7-day treatment period, a single LPS dose (2 mg/kg), was administered, followed by comprehensive assessments of behavior and biochemical parameters. Notably, a statistically significant (p < 0.05) alleviation of depressive symptoms was discerned in the Esc + Vit C + Vit D group versus the LPS group, albeit with concomitant pronounced sedation evident in all LPS-treated groups (p < 0.05). Within the cortex, LPS reduced (p < 0.05) the expression levels of NOx, Nrf2, BDNF, and HO-1, with only HO-1 being reinstated to baseline in the LPS + Esc + Vit D and the LPS + Esc + Vit C + Vit D groups. Conversely, the hippocampal NOx, Nrf2, and HO-1 levels remained unaltered following LPS administration. Notably, the combination of Esc, Vit C, and Vit D effectively restored hippocampal BDNF levels, which had been diminished by Esc alone. In conclusion, vitamins C and D enhance the therapeutic effects of escitalopram through a mechanism independent of Nrf2. These findings underscore the imperative need for in-depth investigations.


Subject(s)
Escitalopram , Lipopolysaccharides , Mice , Animals , Male , Lipopolysaccharides/pharmacology , Depression/drug therapy , Depression/metabolism , Ascorbic Acid/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , NF-E2-Related Factor 2/metabolism , Vitamins , Adjuvants, Immunologic , Vitamin D , Models, Animal
12.
NPJ Syst Biol Appl ; 10(1): 5, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218856

ABSTRACT

Traditional Chinese medicine is one of the most commonly used complementary and alternative medicine therapies for depression. Integrated Chinese-western therapies have been extensively applied in numerous diseases due to their superior efficiency in individual treatment. We used the meta-analysis, network pharmacology, and bioinformatics studies to identify the putative role of Longya Lilium combined with Fluoxetine in depression. Depression-like behaviors were mimicked in mice after exposure to the chronic unpredictable mild stress (CUMS). The underlying potential mechanism of this combination therapy was further explored based on in vitro and in vivo experiments to analyze the expression of COX-2, PGE2, and IL-22, activation of microglial cells, and neuron viability and apoptosis in the hippocampus. The antidepressant effect was noted for the combination of Longya Lilium with Fluoxetine in mice compared to a single treatment. COX-2 was mainly expressed in hippocampal CA1 areas. Longya Lilium combined with Fluoxetine reduced the expression of COX-2 and thus alleviated depression-like behavior and neuroinflammation in mice. A decrease of COX-2 curtailed BV-2 microglial cell activation, inflammation, and neuron apoptosis by blunting the PGE2/IL-22 axis. Therefore, a combination of Longya Lilium with Fluoxetine inactivates the COX-2/PGE2/IL-22 axis, consequently relieving the neuroinflammatory response and the resultant depression.


Subject(s)
Fluoxetine , Lilium , Mice , Animals , Fluoxetine/pharmacology , Depression/drug therapy , Depression/metabolism , Lilium/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
13.
J Ethnopharmacol ; 324: 117754, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38232859

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Clinical research and basic scientific experiments have shown that modified Xiaoyaosan (MXYS) has antidepressant effects, whose system mechanism however has not been thoroughly characterized. AIM OF THE STUDY: This research was aimed at evaluating the treatment effects of MXYS on chronic unpredictable mild stress (CUMS)-induced depressive mice and exploring underlying mechanisms. MATERIALS AND METHODS: Whether MXYS has effects on depression was investigated via the depressive behaviors of mice, electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, immunofluorescence (IF) staining and the stereotaxic injection of adeno-associated viruses (AAVs). In addition, network pharmacology was applied to predict relevant molecular targets and possible mechanisms and perform further in vivo validation. RESULTS: MXYS is effective in ameliorating the depression-like symptoms of CUMS mice. It can stimulate autophagosome formation, activate the expression of microtubule-associated protein 1 light chain 3 (LC3B), autophagy-related gene 5 (Atg5), Atg7 and neuron-specific nuclear protein (NeuN), and decrease the protein expression sequestosome 1 (SQSTM1/p62). The autophagy-upregulating effect of MXYS was weakened by silencing. The network pharmacology analysis revealed that mitogen-activated protein kinase 1 (MAPK1), MAPK3, serine/threonine-protein kinase (AKT1), proto-oncogene tyrosine-protein kinase (SRC), PI 3 kinase p85 alpha (PIK3R1), catenin (cadherin-associated protein) beta 1 (CTNNB1) and human thrombin activator 1 (HRAS) may be of importance to treat depression by MXYS. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that metabolic and autophagy pathways, pathways in cancer and MAPK, phosphoinositide 3-kinase (PI3K)-Akt and rhoptry-associated protein 1 (Rap1) signaling pathways are involved in the antidepressant effects of MXYS. As suggested by Western blot, the anti-depression mechanism of MXYS is possibly associated with the extracellular signal-regulated protein kinase (ERK)/P38 MAPK signaling pathway. CONCLUSION: The findings indicate the possible antidepressant effects of MXYS on CUMS mice via triggering autophagy to alleviate neuronal apoptosis and prompting autophagy, which may involve the ERK/P38 MAPK signaling pathway.


Subject(s)
Depression , Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Mice , Humans , Animals , Depression/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Network Pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , p38 Mitogen-Activated Protein Kinases , Proto-Oncogene Proteins c-akt/metabolism
14.
Mol Neurobiol ; 61(3): 1655-1672, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37751044

ABSTRACT

In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.


Subject(s)
Depression , Perimenopause , Rats , Animals , Depression/drug therapy , Depression/metabolism , Chromatography, Liquid , Serotonin/metabolism , Tandem Mass Spectrometry , Brain , Hippocampus/metabolism , Disease Models, Animal
15.
Brain Res ; 1824: 148676, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37956747

ABSTRACT

The olfactory bulbectomy (OBX) animal model of depression reproduces the behavioral and neurochemical changes observed in depressed patients. We assessed the therapeutic effects of the Jieyu Chufan (JYCF) capsule on OBX rats. JYCF ameliorated the hedonic and anxiety-like behavior of OBX rats and attenuated the cortical and hippocampal damage. JYCF enhanced the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and adiponectin (ADPN) in the cortex and hippocampus of OBX rats. JYCF also reduced cortisol levels and restored the levels of excitatory neurotransmitters, such as 5-hydroxytryptamine (5-HT), acetylcholine (ACH), and glutamic acid (Glu), in the brain tissue of OBX rats. Our results suggest that JYCF preserves the synaptic structure by increasing the levels of synaptophysin (SYN) and postsynaptic density protein 95 (PSD95) and alleviates the histological alterations of brain tissue by activating AKT/PKA-CREB-BDNF pathways, and by upregulating ADPN and FGF2 expression in OBX rats. JYCF exerts multiple therapeutic effects on depression, including modulating neurotransmitters, repairing neuronal damage, and maintaining synaptic integrity. These findings support the potential of JYCF as a novel antidepressant agent with therapeutic effects on depression and related neurological disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Humans , Rats , Animals , Depression/drug therapy , Depression/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Fibroblast Growth Factor 2/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Neurotransmitter Agents/metabolism , Olfactory Bulb/metabolism , Disease Models, Animal
16.
Phytother Res ; 38(1): 231-240, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37857401

ABSTRACT

To explore the antidepressant effects and targets of atractylenolide I (ATR) through a network pharmacological approach. Relevant targets of ATR and depression analyzed by network pharmacology were scored (identifying 5-HT2A targets). Through elevated plus maze, open field, tail suspension, and forced swimming tests, the behavioral changes of mice with depression (chronic unpredictable mild stress [CUMS]) were examined, and the levels of neurotransmitters including serotonin, dopamine, and norepinephrine (5-HT, DA, and NE) were determined. The binding of ATR to 5-HT2A was verified by small molecular-protein docking. ATR improved the behaviors of CUMS mice, elevated their levels of neurotransmitters 5-HT, DA, and NE, and exerted a protective effect on their nerve cell injury. After 5-HT2A knockout, ATR failed to further improve the CUMS behaviors. According to the results of small molecular-protein docking and network pharmacological analysis, ATR acted as an inhibitor by binding to 5-HT2A. ATR can improve the behaviors and modulate the neurotransmitters of CUMS mice by targeting 5-HT2A.


Subject(s)
Depression , Lactones , Serotonin , Sesquiterpenes , Mice , Animals , Depression/drug therapy , Depression/metabolism , Serotonin/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Neurotransmitter Agents/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal , Hippocampus , Behavior, Animal
17.
Behav Brain Res ; 459: 114788, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38036263

ABSTRACT

Does it make a difference what we eat when it comes to our mental health? Food and nutrients are essential not only for human biology and physical appearance but also for mental and emotional well-being. There has been a significant increase in the favourable effects of dietary supplements in the treatment of depressive state in the latest days. Co-supplements which can be a great contribution in the management of depression from the future perspective and might help to reduce standard anti-depressant drug doses, which can be a strategic way to reduce the side effect of standard anti-depressants drugs. This study was designed to evaluate and compare the anti-depressant effects of cholecalciferol-D3 (V.D3), n-3 polyunsaturated fatty acid (PUFA), and a combination of V.D3 + n-3 PUFA with fluoxetine treatment in chronic unpredictable mild stress (CUMS) induced depression in the mice model. We established CUMS depressant mice model and treated CUMS mice with V.D3, n-3 PUFA, and a combination of V.D3 + n-3 PUFA with fluoxetine. Behavioral changes were measured by the forced swim and tail suspension test. Oxidative stress markers and anti-depressant activity were assessed through parameters such as superoxide dismutase, reduced glutathione, lipid peroxidation, and serum corticosterone levels. Additionally, we measured the levels of neurotransmitters dopamine and serotonin. CUMS induced mice displayed depressive-like behaviours. Moreover, cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine treatment attenuated the depressive-like behaviour in CUMS mice accompanied with suppression of oxidative stress markers by up-regulated the expression of an antioxidant signalling pathway. The results suggested that treatment of cholecalciferol-D3, n-3 PUFA, and a combination of Cholecalciferol-D3 + n-3 PUFA with fluoxetine significantly ameliorated depressive-like behaviours in CUMS induced depression in mice. To delve further into the implications of these findings, future studies could explore the specific molecular mechanisms underlying the observed effects on oxidative stress markers and the antioxidant signaling pathway. This could provide valuable insights into the potential of dietary supplements in the management of depression and help in reducing the reliance on conventional antidepressant medications, thus improving the overall quality of treatment for this prevalent mental health condition.


Subject(s)
Depression , Fatty Acids, Omega-3 , Mice , Humans , Animals , Depression/drug therapy , Depression/etiology , Depression/metabolism , Fluoxetine/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Dietary Supplements , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal , Hippocampus/metabolism , Behavior, Animal
18.
Phytomedicine ; 123: 155224, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006805

ABSTRACT

BACKGROUND: Post-stroke depression (PSD) is a common psychiatric symptom after a stroke. Morroniside, an iridoid glycoside found in Cornus officinalis, has garnered significant attention for its potential to alleviate symptoms associated with depression. PURPOSE: This study aims to highlight the potential use of morroniside in the treatment of PSD and elucidate the underlying molecular mechanisms. METHODS: To establish a reliable PSD model, male C57BL/6 mice were subjected to brief MCAO in conjunction with CUMS. Post-morroniside administration, neuronal viability, and hippocampal cell apoptosis were evaluated by Nissl staining and TUNEL detection, respectively. Depression-like behaviors were evaluated using SPT, TST, and FST. The Longa score and cylinder test were used to evaluate the effect of morroniside on motor function. Furthermore, to investigate the underlying molecular mechanisms, bioinformatic analysis and the dual luciferase assay were performed to investigate the MiR-409-3p-BDNF interaction. In addition, subsequent to MiR-409-3p overexpression via AAV virus, we assessed mRNA expression and protein levels of key components within the BDNF/TrkB signaling pathway using RT-qPCR, immunohistochemistry, and western blot analysis. RESULTS: The observed decrease in apoptosis and amelioration of depression-like behaviors strongly indicate the potential of morroniside as a therapeutic agent for PSD. Furthermore, the upregulation of key proteins within the BDNF/TrkB signaling pathway in the cortex suggests that morroniside activates this pathway. Through bioinformatics analysis, MiR-409-3p was identified and found to bind to the BDNF gene, resulting in the inhibition of BDNF expression. Importantly, we demonstrate that morroniside mitigates this inhibitory effect of MiR-409-3p on BDNF, thereby facilitating the activation of the BDNF/TrkB signaling pathway. CONCLUSION: The findings suggest that morroniside demonstrates the ability to improve PSD symptoms through the BDNF/TrkB signaling pathway mediated by MiR-409-3p. These results emphasize the importance of the BDNF signaling pathway in improving PSD symptoms and provide a possible mechanism for morroniside to treat PSD.


Subject(s)
Glycosides , MicroRNAs , Stroke , Mice , Male , Animals , Depression/drug therapy , Depression/etiology , Depression/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Mice, Inbred C57BL , Stroke/complications , Stroke/drug therapy , Signal Transduction , MicroRNAs/genetics
19.
Brain Res ; 1822: 148609, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37783259

ABSTRACT

BACKGROUND: It is unclear whether acupuncture has a rapid antidepressant effect and what is the main mechanism. METHODS: In this study, forced swimming stress test (FST) in mice were divided into five groups: control group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Chronic unpredictable mild stress (CUMS) model rats were divided into six groups: naïve (non-CUMS) group, CUMS group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Twenty-four hours after the end of treatment, FST was conducted in mice and rats. The expression of M1-AchR, AMPA receptors (GluR1 and GluR2), BDNF, mTOR, p-mTOR, synapsin I, and PSD95 in the prefrontal cortex was determined by western blot. The spine density of neurons in the prefrontal cortex was detected by golgi staining. RESULTS: The results showed that acupuncture reduced the immobility time of FST in two depression models. Acupuncture inhibited the expression of M1-AchR and promoted the expression of GluR1, GluR2, BDNF, p-mTOR, synapsin I, PSD95, and increased the density of neuron dendritic spine in the prefrontal cortex. CONCLUSIONS: The rapid antidepressant effect of acupuncture may be activating the "glutamate tide" - AMPA receptor activation - BDNF release - mTORC1 pathway activation through inhibiting the expression of M1-AchR in the prefrontal cortex, thereby increasing the expression of synaptic proteins and regulating synaptic plasticity.


Subject(s)
Acupuncture Therapy , Depression , Rats , Mice , Animals , Depression/therapy , Depression/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Synapsins/metabolism , Arecoline/metabolism , Arecoline/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , TOR Serine-Threonine Kinases/metabolism , Disease Models, Animal , Scopolamine/pharmacology , Prefrontal Cortex/metabolism , Neuronal Plasticity , Hippocampus/metabolism , Stress, Psychological/therapy , Stress, Psychological/metabolism
20.
Brain Res ; 1826: 148715, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38142722

ABSTRACT

BACKGROUND: The treatment of depression with acupuncture has been documented. The mechanism behind acupuncture's curative and preventative effects is still unknown. METHODS: The current study examined the effects of acupuncture on depression-like behaviors in a rat model of chronic unpredictable mild stress (CUMS), while also exploring its potential mechanisms. A total of six groups of rats were randomly assigned: control, CUMS, acupuncture, fluoxetine, acupoint catgut embedding and sham acupoint catgut embedding. Fluoxetine (2.1 mg/kg) and acupoint catgut embedding were used for comparative research to acupuncture. The modelling evaluation is measured by body weight and behavior tests. Western blotting and reverse transcription-polymerase chain reaction were used to detect the proteins and mRNA expression of Silent information regulator 1 (Sirt1)/ nuclear factor-erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1)/ Glutathione peroxidase 4 (GPX4) pathway in the hippocampus. The expression of oxidative stress (OS)-related proteins and inflammatory cytokines in the serum was detected with ELISA. Immunofluorescence showed microglia and astrocytes activity in the hippocampus. RESULTS: Acupuncture and fluoxetine could alleviate CUMS-induced depression-like behaviors. Acupuncture was also found to effectively reverse the levels of MDA, SOD, GSH, GSH-PX and T-AOC, IL-1ß, IL-6 and TNF-α in the serum of CUMS-induced rats. Rats with CUMS showed decreased levels of Sirt1, Nrf2, HO-1 and GPX4 in the hippocampus, while acupuncture treatment could partly reverse the diminished effects. In addition, acupuncture treatment significantly reduced the activation of hippocampal microglia and astrocytes in CUMS-induced rats. CONCLUSION: The study's findings indicate that acupuncture has the potential to mitigate depression-like behaviors in rats induced with CUMS by mitigating OS and reducing neuroinflammation.


Subject(s)
Acupuncture Therapy , Ferroptosis , Rats , Animals , Depression/etiology , Depression/therapy , Depression/metabolism , Fluoxetine/pharmacology , Neuroinflammatory Diseases , Sirtuin 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Stress, Psychological/complications , Stress, Psychological/therapy , Stress, Psychological/metabolism , Hippocampus/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL